Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm

نویسندگان

  • Junling Hu
  • Michael P. Wellman
چکیده

In this paper we adopt general sum stochas tic games as a framework for multiagent re inforcement learning Our work extends pre vious work by Littman on zero sum stochas tic games to a broader framework We de sign a multiagent Q learning method under this framework and prove that it converges to a Nash equilibrium under speci ed condi tions This algorithm is useful for nding the optimal strategy when there exists a unique Nash equilibrium in the game When there exist multiple Nash equilibria in the game this algorithm should be combined with other learning techniques to nd optimal strategies

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Multiagent Reinforcement Learning in Stochastic Games

We adopt stochastic games as a general framework for dynamic noncooperative systems. This framework provides a way of describing the dynamic interactions of agents in terms of individuals' Markov decision processes. By studying this framework, we go beyond the common practice in the study of learning in games, which primarily focus on repeated games or extensive-form games. For stochastic games...

متن کامل

Convergence Problems of General-Sum Multiagent Reinforcement Learning

Stochastic games are a generalization of MDPs to multiple agents, and can be used as a framework for investigating multiagent learning. Hu and Wellman (1998) recently proposed a multiagent Q-learning method for general-sum stochastic games. In addition to describing the algorithm, they provide a proof that the method will converge to a Nash equilibrium for the game under specified conditions. T...

متن کامل

Analysis of an evolutionary reinforcement learning method in a multiagent domain

Many multiagent problems comprise subtasks which can be considered as reinforcement learning (RL) problems. In addition to classical temporal difference methods, evolutionary algorithms are among the most promising approaches for such RL problems. The relative performance of these approaches in certain subdomains (e. g. multiagent learning) of the general RL problem remains an open question at ...

متن کامل

Multiagent Coordination in Cooperative Q-learning Systems

Many reinforcement learning architectures fail to learn optimal group behaviors in the multiagent domain. Although these coordination difficulties are often attributed to the non-Markovian environment created by the gradually-changing policies of concurrently learning agents, a careful analysis of the situation reveals an underlying problem structure which can cause suboptimal group policies ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998